
Maker Portfolio Details
By Sean Donelan

Much of my personal time is spent in a self-made workshop at school, which I helped set up in an
unoccupied area, and my workbench at home. Over the course of roughly a year, I have created
the following four projects from different pieces of electronic waste that I have found and
managed to understand.

1. Stratasys 3D Printer Recovery & Repair
Behind my school district’s office, there is a scrap pile where I found the following:
-- A Stratasys Dimension Elite ABS FDM 3D-printer
-- Soiled metal cart with Cleanstation Soluble Support Removal System DT3
-- 8 half-empty bottles of Stratasys WaterWorks P400 solute
-- 1 broken Stratasys ABSPlus cartridge, filled with about 4 inches of support material
-- 1 broken Stratasys ABSPlus cartridge, filled with the half full of model material
All of these objects seemed to follow a common theme -- together they could be used to print high quality, durable 3D
prints out of ABS plastic. So, I decided to attempt to get the printer and its supporting equipment up and running.

Repairing the Printer
I had trouble starting up the Dimension Elite printer, despite my attempts to bypass the broken thermal regulation
switch and provide power to the printer's logic and motor control boards. It turned out that the hard drive was
damaged and unable to be booted from, causing the Pentium-based PC/104 form factor industrial computer
responsible for controlling the printer to fail. In an attempt to resolve the issue, I removed the faulty hard drive and
used Autopsy, a forensics software based on TheSleuthKit, to locate an installation of embedded Linux with an
outdated Kernel (v2). However, I was disappointed with the results of the filesystem of this Linux installation, as it
only contained compiled executable binaries that would require extensive reverse-engineering efforts to use. As an
alternative approach, I chose to reverse-engineer the motor controller's hardware instead. Below is a simplified
drawing of the hardware configuration I settled on:

Technical Details
Crossed-out components represent
unused sections of the old system. The
onboard Raspberry Pi Zero runs a
stripped-down modified version of
Printrun to control the printer.

The Pi Zero acts as a USB gadget,
allowing it to mount storage for prints
and communicate using TCP.

The printer can now produce quality
objects in both modeling (ABS plastic)
and support material, which we could
then chemically treat with the
CleanStation to make nice plastic
products.

2. Colored Noise Maker - Therapeutic Sleep Aide
I have several friends who struggle with sleeping issues. Interestingly, they all believe that white noise or similar
variants are comforting and help them sleep better. To assist my friends in finding suitable noise preferences for
restful sleep, I have created a system to measure and utilize such preferences easily. After a quick survey of my
friends, I discovered that they could categorize the types of noise they prefer based on the different “colors” of noise.
Each “color” represents a unique characteristic power spectrum in a signal. I had to create every variation of this
particular noise color to produce efficient sound from a device. Afterward, I combined them following their input
intensities.

Computationally Generating the Noise
After conducting research, I decided to repurpose existing programming to generate white, blue, Brownian (red),
violet, and pink noise:
--Blue, Brownian, and Violet Noise: I relied on the work of Stephane Plaszczynski’s rather ingenious method of
producing noise with a specific frequency spectrum, characterized by filtering a Gaussian white noise stream into
streams with arbitrary 1/f^alpha characteristics.
--Pink Noise: I used a Python implementation of the Voss-McCartney algorithm, which is more efficient than the
algorithm used for the other streams.

I was especially happy with how my Brownian noise generator worked, as it had an output power spectrum
distribution that looked like this:

Hardware Implementation and
Testing

The five streams of noise were rather
computationally difficult to produce, which was
likely a product of my own inefficient programming.
I could only manage an output bitrate of 1100Kbps
on my originally planned embedded computer
before the program would attempt to buffer
samples or overrun the host machine’s computing
resources.

I originally planned to run the five noise stream
generators on an ODROID C0 I found in a dustbin
at a convention, but I unfortunately had to switch to
a considerably larger host. I eventually settled on a
stripped-down Acer C720 Chromebook taking input
from potentiometers connected to one half of an
Arduino (the other half was tragically lost in a
sawing accident).

After my friends tried using my somewhat obtuse device, they reported improvement in their sleep compared
to a placebo or plain white noise.

3. Packet Radio Project - Getting a Signal Anywhere
I go to Northgate High School, which is notable for its unique architecture. The school is situated on the outskirts of
town and is primarily constructed with concrete, resulting in extremely poor cell signal reception. To address the
issue, I endeavored to create a monopole antenna that would ideally possess superior characteristics compared to
the antenna on my phone. Regrettably, it yielded disappointing results, prompting me to search for a more effective
resolution.

Designing the Radio
I decided to overcome this problem using RF power and my amateur radio license. After some thought, I found that
AFSK modulation combined with an FM signal would allow for adequate data transfer speeds as well as power within
my grasp. A block diagram of the radio I constructed is below:

The modulation of the RF signals is based on the RDA1846 FM transceiver on a chip, which uses a rather clever
amalgamation of an I/Q demodulator and ADC (with integrated DSP system) for receiving while sharing the same VFO as
the transmitting side. From the outset of this project I believed that I could simply modify an off-the-shelf Baofeng UV5R to
allow for my microcontroller to send in signals to the RDA1846’s three-wire SPI interface. However, the newer revisions of
the UV5R use a custom version of the RDA1846 for the UV5R, which have nonstandard register mappings making
programming impossible. So, I used an external module that has a standardized RDA1846 onboard.

Setbacks and Piecing together the Radio
After carefully understanding the slight differences in RF characteristics of the two chips, mainly being output power, I
used pieces of 50 ohm coaxial cable cut from a broken laptop Wi-Fi antenna to send the input and output RF signals of
the RDA1846 to the RF front end of the Baofeng UV5R. After modifying the gate collector voltages on a few of the
transistors of the UV5R’s amplifier, I managed to get a workable 21.3V RMS to the output feed line after filtering, equating
to about 8W of average radiated power.

Transmitting and Receiving Data
After removing the Arduino bootloader from my ATMEGA328P (Arduino UNO) board, I modified some fuses controlling
TIMER0, which I would later use to modulate AFSK signals. I could now achieve a baud rate of a whopping 1450 baud
(~1.4Kbps), slightly improving over the originally planned 1200 baud. I added little in the way of link-layer (or OSI Level 2)
code due to time constraints, but my radio could page my parents about my whereabouts.

The base station receiver was little more than a Raspberry Pi running a heavily modified version of RpiTx, software that
uses the Raspberry Pi’s onboard timers and GPIO to modulate an RF signal, a borrowed RF amplifier, homemade RF
filters, and a borrowed RTL-SDR dongle using GNU Radio for receiving. The radio performs admirably and has helped
keep me in contact with my parents and the outside world even during power and internet outages.

4. Bicycle Anemometer Project - Beating Headwinds
I really like biking, and every day I ride my bicycle to work, school, errands, or friends. However, there are many literal
resistive forces at work that make biking less enjoyable for me, the chief of which is wind. To alleviate the associated
miserable resistance headwinds pose to biking fast, I could make myself more aerodynamic. Or, instead of wearing
skin-tight clothing and stripping my bike down of components, I could avoid the wind altogether.

Collecting the Data
To bike without being affected by strong winds, I need to determine how much wind blows in the opposite direction of
my travel on different routes. I surmised that there would be a correlation between the wind resistance I encountered
on my path and the data recorded by nearby weather stations. As weather stations typically provide hourly updates,
and my commute lasts roughly 30 minutes, I plan to use the hourly weather readings to forecast the wind resistance I
may experience on the trail. To establish a correlation, I built a package of sensors for my bicycle. The most important
of these sensors is an anemometer (wind meter) created from a discarded PC fan. After rewiring the PC fan to work
as a DC generator (rectifying the output of the fan’s coils), I could use a ADS1015 ADC to find the speed of wind
moving through the fan. Then, a GPS radio, accelerometer, compass, and SD card connected to an ESP32
microcontroller was used to collect the data needed. I then rode my bicycle on a few routes to and from work.

Normalizing the Data for Statistical Inference
To find a correlation, I needed to find a normalized variable
representing the headwind experienced at any particular point on a
route and the expected headwind at that same point. A diagram of the
various vectors I used to represent wind velocities along my route is
shown. To do this, I subtracted the velocities of my bike measured at
every point (VBS) from its corresponding measured wind velocity
(VWT) to find the headwind experienced at that time in relation to my
bike’s position and direction. Then, I found the direction of the wind
expected by the weather station in relation to the direction of my bike,
and used that to find the X and Y components of the expected wind
velocity (VSY). I could repeat the process of finding expected values
for different weather stations along my route to find the stations that
could most accurately predict the wind I felt.

Predicting Wind on the Trail
For every data point, I then calculated the expected resistive wind velocity using the geographically nearest APRS
weather station with wind direction and velocity sensing capabilities. I then placed the data on a scatterplot and ran a
computer regression analysis. The results were rather conclusive, as shown by the P-values in the regression
analysis. My data as well as an example prediction is shown below. This then allowed me to predict which trail had
the lower average wind speed (in relation to the frame of reference from above) using the readings of weather
stations near me.

(Above) The rather good-looking expected vs observed wind velocity graph, showing a strong, positive, linear
correlation.

< The associated regression analysis
shows that my predictions can account for
85% of variation in the observed wind. This
r-sq value greatly exceeds my original
expectations for this project.

< An example map showing that the average
predicted wind speeds suggest that I should take a
route mainly along the Contra Costa Canal Trail, as
it has an overall lower mean expected resistive wind
velocity along it than the YV Canal Trail Route.

These predictions are calculated using the above
mentioned prediction normalization technique
combined with a t-test for difference of means
across ~900 points along the routes. The
significance value for the test behind the prediction
on the map is 0.05.

Thank you! I appreciate you for taking the time to read my tech notes. Please feel free to
reach out to me at seanhyund@gmail.com if you have any questions or suggestions.

